Search for Extraterrestrial Intelligence: GPU Accelerated TurboSETI

Luigi Cruz, Wael Farah, Richard Elkins SETI Institute

BACKGROUND

- Radio telescopes are used to monitor the sky.
- They search for radio-based technosignatures.
- Each telescope antenna generates Tb/s of data.
- \blacklozenge Recordings are scanned for drifting signals.
- This analysis is performed by TurboSETI.
- Taylor's De-Doppler algorithm is employed.
- Memory and compute-intensive process.

APPROACH

An effort to optimize the existing CPU code and create a GPU accelerated backend for TurboSETI.

CuPy

- Numpy is used by TurboSETI existing algorithms.
- ✦ Taylor De-Doppler algorithm rewritten with CuPy.
- CuPy offers GPU acceleration via NVIDIA CUDA.

Numba

- Cython was used by some TurboSETI functions.
- \bullet Difficult to maintain due to different syntax.
- Functions rewritten in pure Python and Numba.
- ♦ Numba uses JIT compilation to generate ASM.
- ✦ Yielding C-like performance with Python code.

Single-Precision Floating-Point

- \bullet Original implementation handled input as 64-bit.
- Unnecessary due to hardware limitations.
- ♦ Mathematical operations with 64-bits take longer.
- Logic added to support 32-bits floating-point.

RESULTS

PRESENTER

- New CPU and GPU implementations are faster.
- Benchmark shows faster CPU performance.
- Single-precision backend considerably faster.
- ♦ New GPU code is up to 9.3x faster than CPU.
- Optimizations mean more data processing.

EMAIL lfcruz@seti.org Luigi Cruz **TWITTER & GITHUB** @luigifcruz

GPU ACCELERATED RADIO-BASED SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE IS UP TO 10 TIMES FASTER THAN TRADITIONAL CPU-BASED ALGORITHM

Take a picture to download the full paper.

Double-Precision (float64)

Impl.	Device	File A	File B	File C
Cython	CPU	0.44 min	25.26 min	23.06 min
Numba	CPU	0.36 min	20.67 min	22.44 min
CuPy	GPU	0.05 min	2.73 min	3.40 min

TABLE 1

Double precision processing time benchmark with Cython, Numba and CuPy

Single-Precision (float32)						
Impl.	Device	File A	File B	File C		
Numba	CPU	0.20 min	10.15 min	$\frac{10.13}{2} \lim_{n \to \infty} 10.13 $		
Cury	UFU	0.03 11111	1.32 11111	2.14 11111		

TABLE 2

Single precision processing time benchmark with Numba and CuPy molementation.

