Real-Time Digital Signal Processing with SciPy Signal:
Simultaneous Demodulation of
Multiple FM Stations

Luigi Cruz
@luigifcruz

Software Defined Radios

- Radio system implemented in software.

- Hardware responsible to tune to the right frequency and digitize the signal.
- The SDR outputs a stream of 1/Q floating-point voltages to the computer.

- Can receive wideband signals like Digital TV, LTE, 5G and Wi-Fi signals.

FM Broadcast Demodulation

Encodes information on a carrier wave varying in frequency.

The encoded information can be recovered using a differentiator and
envelope detector.

Easily doable with SciPy Signal and Numpy.

This generates a Mono output. More processing is necessary for Stereo.

61 _tmp = self._xp.angle(_tmp)

62 _tmp = self._xp.unwrap(_tmp)

63 _tmp = self. _xp.diff(_tmp)

64 _tmp = self._xp.pad(_tmp, (1, 9))
65 _tmp = _tmp / self._xp.pl

66 _tmp = self._decimate.run(_tmp)

https://docs.google.com/file/d/1M4_CEz4y6_5mvEjQvrZARz3mq5r8P538/preview

Simultaneous Demodulation on the GPU

- An SDR receives the entire FM spectrum 88 MHz to 108 MHz (20 MHz).
- Channelizes the input into individual FM stations (200 kHz).

- Demodulate the FM Broadcast into a Stereo audio output (48 kHz).

- Audio can be saved on disk or analyzed on the GPU (e.g. ASR).

19 (@dataclass
20 class Config:

24 enable_cuda: bool = False # If True, enable CUDA demodulation.

22 input_rate: float = 10eé6 # The SDR RX bandwidth.

23 device_name: str = "airspy" # The SoapySDR device string.

24 deemphasis: float = 75e-6 # 75e-6 for Americas and Korea, otherwise 50e-6.
25 channels = [

26 Channel(96.9e6, 240e3, 48e3, WBFM),

27 Channel(94.5e6, 240e3, 48e3, MFM),

28 Channel(97.5e6, 240e3, 48e3, FM),

29]

30

Realtime Operations
Optimizations for Python

What | learned from this project.

Better performance at no cost.

1 - Floating-Point Precision

- Wrong precision floating-points generates inefficiency.
- Impacts memory usage and processing performance.
- Be mindfull about the dtype of your array.

- It’s free real estate!

PULL REQUEST #15366 (MERGED)
- Sometimes third-party functions cast the dtype into higher precision.
- Hibert functions were ~35% slower on the CPU with single-precision FP.

3]: dataé4 = np.random.rand(2%%21).astype(np.floaté4) 3]: dataé4 = np.random.rand(2xx21).astype(np.floaté4)
4]: data32 = dataé4.astype(np.float32) n [4]: data32 = datab4.astype(np.float32)
5]: %timeit sc.hilbert(dataé4) n [5]: %timeit sc.hilbert(dataé4)

126 ms + 284 ps per loop (mean + std. dev. of 7 runs, 10 13@ ms + 259 ps per loop (mean + std. dev. of 7 runs, 10 1

6]: %timeit sc.hilbert(data32) In [6]: %timeit sc.hilbert(data32)
102 ms + 481 ps per loop (mean + std. dev. of 7 runs, 10 95 4 e 4 174 ps per loop (mean + std. dev. of 7 runs, 10

Original Code Patched Code

1 - Floating-Point Precision

CUSIGNAL PULL REQUEST #447 (MERGED)

- Bigger difference on the GPU implementation.
- Hibert functions were ~87% slower on the GPU with single-precision FP.

Patch

$timeit -n 1000 gpu_sci.hilbert(gpu_data64)

2.46 ms * 6.13 us per loop (mean * std. dev. of 7 runs, 1000 loops each)

$timeit -n 1000 gpu_sci.hilbert(gpu_data32)

579 us * 16.8 us per loop (mean * std. dev. of 7 runs, 1000 loops each)

Upstream

$timeit -n 1000 gpu_sci.hilbert(gpu_data64)

2.45 ms * 58 us per loop (mean * std. dev. of 7 runs, 1000 loops each)

%timeit -n 1000 gpu_sci.hilbert(gpu_data32)

1.47 ms * 64 us per loop (mean * std. dev. of 7 runs, 1000 loops each)

2 - Threading with Audio

- Blocking calls are used by the SDR driver to transfer data to the application.
- This causes the execution to halt until new data is available.

- This dramatically reduces the time available for processing.

- It's important to NEVER block the audio thread.

SOLUTION
- Create one thread for processing and other of audio playback.
- Synchronize send data using ring-buffers.

3 - Ring Buffers

- A DSP program is a chain of discrete functions sharing vectors of data.
- Sometimes the consumer and producer are in different threads.
- The length of a vector can change between DSP functions.

SOLUTION

- Provides synchronization.
- Smoothly crosses these lenght boundaries.
- It allocates memory on initialization and reuse throughout the execution.

4 - Stop Repeating Work

- Underlying implementation might duplicate operations.
- Unnecessary processing depending on the method order.

EXAMPLE
- Resample function from SciPy Signal.
- Function expects input in the time-domain.
- If the data is in the frequency-domain, a conversion is required (iFFT).
- But the function will convert the input to frequency-domain internally (FFT).
- Useless operations!

scipy.signal.resample

scipy.signal.resample(x, num, t=None, axis=@, window=None) [sourcel

Resample x to num samples using Fourier method along the given axis.

The resampled signal starts at the same value as x but is sampled with a spacing of len(x) / num *
(spacing of x).Because a Fourier method is used, the signal is assumed to be periodic.

4 - Stop Repeating Work

PULL-REQUEST #11776 (MERGED)

scipy.signal.resample

scipy.signal.resample(x, num, t=None, axis=0, window=None, domain='time"')

Resample x to num samples using Fourier method along the given axis. [sourcel

The resampled signal starts at the same value as x but is sampled with a spacing of len(x) / num
(spacing of x).Because a Fourier method is used, the signal is assumed to be periodic.

2880 + if domain == 'time':

2881 + # Forward transform

2882 + if real_input:

2883 + X = sp.fft.rffE(x, axis=axis)
2884 + else: # Full complex FFT

2885 + X = sp fift.fft(x, axis=axis)
2886 + else: # domain == 'freq'

2887 + X =x

Looking at the source code can help you achieve better performance!

5 - The GPU Likes Frequency-Domain Data

- Infinite Impulse Response (lIR) filters perform terribly on GPU.
- Every operation depends on the previous operation (can’t parallelize).

SOLUTION
- Finite Impulse Response (FIR) filters work on the frequency-domain.
- It's parallelizable since operations don’t depend on each other.
- Implemented on cuSignal and SciPy Signal (firwin, [filter, filtfilt).

scipy.signal.firwin

scipy.signal.firwin(numtaps, cutoff, width=None, window='hamming’,
pass_zero=True, scale=True, nyq=None, fs=None) [sourcel

FIR filter design using the window method.

This function computes the coefficients of a finite impulse response filter. The filter will have linear phase; it
will be Type | if numtaps is odd and Type Il if numtaps is even.

Type Il filters always have zero response at the Nyquist frequency, so a ValueError exception is raised if
firwin is called with numtaps even and having a passband whose right end is at the Nyquist frequency.

5 - The GPU Likes Frequency-Domain Data

IR BASED FM-DEEMPHASIS

np.exp(-1/(200e3 * 75e-6))
="[1-x]

=[xl
dsigl = sc.1lfilter(b, a, sig)

FIR BASED FM-DEEMPHASIS

butter = sc.dlti(b, a)
t, y = sc.dimpulse(butter, n=51)

coeffs = (np.squeeze(y), 1.0)
dsig2 = sc.1lfilter(*coeffs, sig)

Fuchsia: FIR Filtered Signal
Red: IIR Filtered Signal

o
L
o
=
wn
[
O
(=]
m
=
=]
[=}
o
o
]
=
a
g
a

Blue: Original Signal

0 20000 40000 60000 80000 100000
Freguency

Thanks for listening!

EMAIL TWITTER & GITHUB
contact@Iuigi.ltd @Iuigifcruz
CONFERENCE SLACK LINKEDIN

Luigi Cruz (@luigifcruz) Luigi Cruz (@luigifc)

HAM RADIO CALLSIGN
PU2SPY

el
S

2ol
[=]EL ey

Radio Core Github My Social Media

